Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster.

نویسندگان

  • Junko Yano
  • Jan Kern
  • Kenneth Sauer
  • Matthew J Latimer
  • Yulia Pushkar
  • Jacek Biesiadka
  • Bernhard Loll
  • Wolfram Saenger
  • Johannes Messinger
  • Athina Zouni
  • Vittal K Yachandra
چکیده

The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn(4)Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn(4)Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom-resolution x-ray structures or other previously proposed models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting.

Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the...

متن کامل

Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy.

Light-driven oxidation of water to dioxygen in plants, algae, and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn 4Ca cluster. Although the cluster has been studied by many different methods, its structure and mechanism have remained elusive. X-ray absorption and emission spectroscopy and extended X-ray absorption fine structure studies have been particularly useful in probing ...

متن کامل

Photosynthetic water oxidation at high O2 backpressure monitored by delayed chlorophyll fluorescence.

The atmospheric dioxygen is produced by photosynthetic organisms. This light-driven process culminates in what appears as one step: a four-electron abstraction from two water molecules bound to the Mn4Ca complex of photosystem II. Recently, an intermediate of the O2-producing reaction sequence was stabilized by elevated oxygen backpressure and detected by UV flash photometry [Clausen, J., and J...

متن کامل

High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy.

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 314 5800  شماره 

صفحات  -

تاریخ انتشار 2006